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The soliton solutions of the (1 + 1)-dimensional real t7!34 
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t Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green 
Street, Urbana, IL 61801, USA 

Received 12 October 1982 

Abstract. We propose a method based on the concepts of coherent state and the approach 
of the real time Green function to investigate the spontaneous breaking of symmetry in 
a (1 + 1)-dimensional d4 field as well as its r'estoration at finite temperatures. A critical 
temperature T, is found at which the kink-like soliton disappears. In the weak coupling 
limit, t h e  soliton mass Eslr=Tc = (1/3J3)E,1T,o and the critical temperature T, = 

12/3J3)Es1r=o. 

1. Introduction 

In a series of papers by two of the present authors, Ni and Su (1980a, b, c), it is 
argued that the spontaneous breaking of vacuum symmetry in a Higgs field may be 
viewed as some kind of phase transition of a boson system from the normal state to 
the superfluidity state. The condensation density of bosons with zero momentum 
corresponds to the vacuum expectation value of the Higgs field. In discussing these 
problems, we performed a Bogoliubov transformation 

2 0  = &+& (1.1) 

where do ,  being the annihilation operator of bosons with zero momenta (see 5 2), 
annihilates the naive vacuum 10) as follows: 

dolo) = 0. (1.2) 

Aiming at finding a new vacuum state 16) which will be annihilated by the new operator 
to, we have 

t O l i 3 )  = 0. (1.3) 

Substituting (1.1) into (1.3) we see that 

do@) = Jxqd). (1.4) 
The new vacuum IC), being an eigenstate of an annihilation operator d o  with 

eigenvalue J N ~ ,  is a coherent state. No is the occupation number of bosons with 
zero momentum in this condensation phase. Now let us generalise the above concept 

9: Graduate student. 
/ I  Permanent address: Physics Department, Fudan University, Shanghai, China. 
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to the boson condensation with non-zero momenta. In other words, we will try to 
find a coherent state ( f ( k ) )  which is annihilated as follows: 

c*(k)lf(k)) = 0. (1.5) 

By a generalised Bogoliubov transformation 

a*(k) = f ( k ) + c ^ ( k )  

a*(k)lf(k)) = f (k) / f (k)) .  

we have 

(1.7) 

The property of the coherent state lf(k)) is discussed further in appendix 1. 
In this paper, we study the (1 + 1)-dimensional real Higgs 44 field by the above 

concept. After quantising the Hamiltonian in § 2, we perform the transformation 
(1.6) in 0 3 and find three types of solutions for f(k), one of which describes a soliton. 
Then in § 4 by using the real time Green function method at zero temperature, we 
get the elementary excitation spectra in these three cases. In § 5 the above method 
is generalised to finite temperature situations, and we find that the masses of the 
soliton as well as the elementary excitations are all temperature dependent. Then in 
§ 6 a critical temperature is found above which the symmetry broken system restores 
to the original symmetric state accompanying the disappearance of soliton solutions. 
Section 7 will be a summary and further discussions. In two appendices we list some 
formulae of the neutral scalar coherent states as well as the real time temperature 
Green function method. 

2. The quantisation of the Hamiltonian 

Starting from the Lagrangian density 

with mi > 0, g2 > 0, we get the Hamiltonian density as 

2 = +[r2 + (a4/ax - Im iqj2 + zg 1 2 4  4 1. 
Then we perform the following procedures of canonical quantisation: 

d(X, f )  = (2h.L)k)-”2(a^k(f) +a*-k’(f)) eikx 
k 

(2.3) 

r ( x ,  f )  = 1 i(wk/zL)’”(a*:(f)-a*-k(f)) e-ikx (2.4) 

[a^k(t), a ^ l ’ ( f ) ]  = 8 k k ’ .  (2.5) 

U& =($+IC ) 

k 

with the operators obeying the usual equal-time commutation relations 

Notice, however, that 

(2.6) 2 1 /2  

with a mass p which is arbitrary at the present stage and will be chosen at our disposal. 
Substituting (2.3) and (2.4) into (2.2) and bringing the latter in the normal order with 
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respect to the operators 6 and d we have, e.g., 

In : ~ ’ : = N & ( C $ ’ ) ,  all creation operators a t  stand on the left of the annihilation 
operators a. A is the cut-off of momentum. Then after integrating with respect to x, 
we get the following Hamiltonian with constant terms discarded: 

:H: = H2 + H4 (2.8) 

f 4 (4 ‘ I , ,  ( ik2( ik3dk4 + 6 ? k d t k 2  a* :&,(i&,) + 6 d  I d  :k2(ik3d&,] 

m 2  = m i  -(3g2/7r) In (2A/k) 

(2.10) 

(2.11) 

being the renormalised parameter. Obviously, m 2  is p dependent. The coupling 
constant g2 does not change in this renormalisation. The fact that the normal ordering 
is equivalent to a renormalisation was demonstrated by Coleman (1975) in the 
sine-Gordon system. 

with 

3. The generalised Bogoliubov transformation 

Notice that 

a*& t* (2 ~ / L ) ’ ” d  (k ) (3.1) 

d ( k )  = f ( k ) + c * ( k ) ;  (3.2) 

: H : = H b + H i + H ; + H ; + H i  (3.3) 

and perform the generalised Bogoliubov transformation 

then we are able to recast the Hamiltonian (2.8) into the following form: 

where 
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(3.7) 

+ 6c*'(-k1)c*'(-k2)c*(k3)c*(k4)} dkl dk2 dk3 dk4. (3.8) 

At zero temperature, we assume that the ground state is simulated by a coherent 
state I f )  which is characterised by a momentum distribution function f ( k )  as shown 
in (3.2). f ( k )  should be determined by the variation conditions 

S ( : H : ) / S f ( p )  = S H b / S f ( p )  = 0 

S ( : H : ) / S f * ( p )  =SHb/Gf*(p )  = O s  
and 

Thus we have 

f ( - P )  = f * ( p )  
and 

(3.9) 

(3.10) 

(3.11) 

Equation (3.12) can also be derived from the condition 

H i  = O .  (3.13) 

Introduction of 
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leads to 

Furthermore, we carry out a Fourier transformation 

y (p )  =I-, ;(U) e-ipu du 
00 

and get an equation for ?(U) as 

-d2f(u)/du2-3m2f(u) +47rg2f3(u) = 0. 

There are three types of solutions for equation (3.17): 

(a) ;(U) = 0 

f ( k )  = 0. 

The expectation value of energy in vacuum reads as 

( : E l : ) =  U = U ( a )  = 0. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

This trivial solution implies that our system remains in the unstable normal state. 

(b) y”(u) = *m/2JGg. (3.21) 

Thus 

feven(k) = *(m/g) t3~m~)1’2~(k )  (3.22) 

(4) = *m/J2g (3.23) 

U ( b )  = U,,,, = -hm4L/g2 .  (3.24) 

Obviously, this solution corresponds to a spontaneously symmetry broken state in 
which the boson condensation with zero momentum occurs. 

(c) y ( u )  = *(m/2&g) tanh $mu. (3.25) 

Thus 

fodd(k) = rig-’(3.rrmk)’’* cosech(7rklm) (3.26) 

(4) = * ( m / h g )  tanh $mx (3.27) 

U ( C )  = U o d d = - ~ m 4 ~ / g 2 + m 3 / 3 g 2 .  (3.28) 
This is a well known kink-like soliton in configuration space which implies that 

the Bose condensation not only occurs at zero momentum but prevails over the whole 
range of momenta. The last term in (3.28) is just the mass of the soliton at zero 
temperature: 

Es/T=O = m3/3g2. (3.29) 

4. The Green function method (zero temperature) 

We shall use the method of the equation of motion for the real time Green function 
to find out the elementary excitation spectrum of our boson system. Similar treatment 
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has been carried out for some fermion systems (Ni 1983). The formulae used in this 
paper are listed in appendix 2. 

Working in lowest approximation, we define the momentum conserved Green 
function as 

Then the motion equations of these two Green functions can be written in spectral 
representation as 

E61 = (27r-l + R,61+ ApG2 E62 = -A@1 - nP62 (4.3) 

where 

. 
G.=- J dt Gi(t, t’) exp[iE(t, t ‘ ) ]  (i = 1,2)  (4.4) ’ 2T -a 

and 

(4.5) 

In deriving the algebraic equation (4.3), we have made a pairing approximation, i.e. 
a factor (27r/L)S(kl+k2) has been plunged into H;. At the same time, we neglect 
all the contributions of Hi and H ;  because of the fact that (c*:c*k)=(6:c*Tk)=0 at 
zero temperature. The solution of equation (4.3) is well known: 

G I = -  1 E+np 
2~ E’ - (0: - A:) 

which in turn gives us the elementary excitation spectrum of the system as 

(4.6) 

If our system is in uniform condensation phase as shown by (3.22), we find 

E ;  = p 2 f m 2 .  (4.8) 

However, if there is a soliton background as shown by (3.26), the calculation leads to: 

E ;  =p2+m2-6m/L (4.9) 

which is essentially the same value of (4.8) as L +a. So in either case we learn that 
the mass of elementary excitations equals m. 

5. The ground state of the system at finite temperature 

We are now in a position to consider what would happen at finite temperatures. First 
of all, we replace the vacuum average by the ensemble average but with the same 
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symbol. In this case we make every possible pairing of momenta in Hk and reduce 
it to 

I?; =6g2v I dko; ' f ( -k ) [ c^(k )+c^ ' ( -k ) ]  (5.1) 

where a dimensionless parameter v has been picked out, 

v is temperature dependent and approaches zero when T + 0. Then the condition 

fi; = H i  +A; = O  (5.3) 

S ( : H : ) / S f ( p )  = 0 (5.4) 

( : H : )  = HO + (fi; ) + ( i l k  ). ( 5 . 5 )  

will lead to an equation for f (  p )  which can also be derived from the variation principle 

with 

In (I?;) and (I!?;) the same pairing approximation has been made. EqLTstion (5.4) 
reads as 

-d2F(U)/du2-$M2;(U) + 4 ~ g ~ y ' ~ ( u ) = O  (5.6) 

M' = m2 - 12g'v. 

where 

(5.7) 

Comparison between (5.6) and (3.17) is quite interesting. The only change is 
ascribed to replacing m to M. Under the same approximation, all the expressions 
from (3.18) through (4.9) remain valid except the substitution of M for m. In particular, 
the elementary excitation (phonon) spectrum in case (b) or (c) is 

E; = p 2 + M 2  (5.8) 

while the mass of the soliton becomes 

u(c)- u(b) = uodd-Ueven=M3/3g2. (5 .9)  

Notice, however, that U(a) ,  U @ )  or U(c)  themselves will receive an extra contribution 
from the thermal excitation of phonons (see below). 

6. The critical temperature and phase transition 

Let us focus our attention on the parameter v. Using the formulae (see appendix 2) 

(E - Ep f is I-' = P(E - E,)-' T i d ( E  -E,) (6.3) 
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we find 

It is time to take advantage of the arbitrariness of p in up = ( p 2  +p2) l l2 .  We 
choose p = M  to make up =E, = ( p 2  +M2)1’2  and 

Notice that this is the only choice which is consistent with the demand U - 0 
and at the same time we have 

r-o 

A t  A t  

( C p L p )  = 0 

(c*;c*,,> = [exp(PE,) - 11-l 

and 

(6.6) 

which implies that at a certain temperature the elementary excitations (phonons) obey 
the stationary Bose-Einstein distribution, a nice property we would like to have from 
the beginning. We note in passing that a choice of p = O  would lead to infrared 
divergence in the integral (6.5). 

The integration of (6.5). can be performed approximately with the following result 
(Dolan and Jackiw 1974): 

(6.7) u = ( 2 i T ) - ’ [ . r r ~ / 2 ~  + 4 In (M/~TT)  + i y  + O ( M ~ / T ~ ) ]  

where y = 0.5772 is the Euler constant. Substituting (6.7) into (5.7), we get 

M 2  = m 2  - 3g2T/M - (3g2/.rr)[ln (M/4xT) + y + 0(M2/T2)1. (6.8) 

However, we should not forget that m 2  itself, as defined by (2.11), is p dependent. 
Since p = M ( T ) ,  m 2  is also a function of temperature. But we can get rid of this 
uncertainty by defining the renormalised m at zero temperature by 

(6.9) 2 m i r=o=mg 

and noting that 

(6.10) 

M * ( T )  = m; - 3 g ’ ~ / ~  - (3g2/4[ in  (mo/4.rrr) + y + o(M’/T~)I  (6.11) 

so M ( T )  can be expressed as a function of mo, g and T only. Alternatively, we have 

(6.12) 

Then the condition of the existence in this equation of two real roots, one of which 
is positive, leads to a critical temperature 

T,= (2mi/9&g2){1 -(9g2/2.rrm;)[ln (g2/mg) +0.0996]} 

M 3  -{mi  - (3g2/.rr)[ln (mo/47rT) + y]}M +3g2T = 0. 

(6.13) 

where the weak coupling condition 

g2<< m i  (6.14) 
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has been used. At this temperature, the mass square of phonons, M 2 ,  equals 

(6.15) M21T=Tc=fmo 1 2  

which implies that the soliton mass 

E, = M3/3g2 (6.16) 

decreases to 1 / 3 6  times that at zero temperature before it disappears at T = T,. When 
T > T,, M turns to complex, both the condensating phases (b) and (c) cannot exist at 
all and only the uncondensating phase (a) survives. This is an example of symmetry 
restoration which is well known since the pioneer work of Kirzhnits and Linde (1972). 

We may also calculate the phonon spectrum in the normal phase (a) above the 
critical temperature. The results are as follows: 

E,' = p 2 + M t 2  (6.17) 

(6.18) 

(6.19) 

Comparison between (6.15) and (6.19) reveals an abrupt change in phonon spectrum 
at T = T,. There is also an abrupt change in the energy of the system 

(6.20) 3 4 2 U (a  ) 1 T = T, - U (b  )IT = T, 2 (8MTL) T = Tc = m oL/36g 

so there is a phase transition accompanying the symmetry restoration. 

7. Summary and discussion 

We present an example of spontaneous breaking of symmetry and its restoration at 
higher temperatures. Both the symmetry broken state and the soliton state are treated 
as coherent states in which some kind of particle condensation takes place. At first 
sight, it is incompatible with the usual assertion that there is no condensation in a 
(1 + 1)-dimensional bcson system at T # 0 (Hohenberg 1967). But the latter assertion 
is based on the conservation of particle number which is not valid in the present 
model. Actually, particles are created from the naive vacuum in this 44 model. 

There are several kinds of methods for handling the quantum field theory at finite 
temperatures. The approaches developed by Dolan and Jackiw (1974), Weinberg 
(1974) and Bernard (1974) are based on the loop expansion in calculating the effective 
potential and the Matsubara imaginary time Green function method. Recently, Maki 
and Takayama (1979a, b;  Takayama and Maki 1979) used essentially the same method 
to investigate various one-dimensional systems. They got the critical temperature T, 
of the 44 system precisely coinciding with our result (6.13) in the leading term. 

Instead of imaginary time, we propose the real time Green function approach in 
its lowest approximation and find our results at the cost of simple calculation. However, 
the p normal-ordering and renormalisation scheme is emphasised to make the whole 
thing self-consistent which will be discussed further in a subsequent paper (Chen and 
Ni 1983) where an improved version of this method will be presented. 



2454 R-k Su, P-z Bi and G-j Ni 

Acknowledgment 

We would like to thank Professors Han-ying Guo, Rui-bao Tao and W Wonneberger 
for helpful discussions. One of us (Ni) is also grateful to Professors Shan-Jin Chang 
and R 0 Simmons for hospitality. This work is supported by Fudan University, the 
Research Board of the University of Illinois at Urbana-Champaign and the Fudan 
University and UIUC Exchange Program. 

Appendix 1. The coherent state of a neutral scalar field 

For a neutral scalar field, a coherent state including many particle condensation with 
changeable momenta can be defined as 

where 

and 

[a^(k), d t ( k ’ ) ] = S ( k  -k’). 

a*(P)lf) =f(p)lf). 

( f l f )=1 

It can be easily proved that 

The normalisation condition 

leads to 

N = exp(-;llfll*) = exp(-fri) 

where 

(Al.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

is the average number of particles in the coherent state. 

Appendix 2. The real time temperature Green function 

The Green function composed of two operators d(t)  and 8(t‘) is defined as 

GAB ( r ,  r ‘ )  = ((A ( t )  Id ( t  ’))) = -i( TA ( r  )d (t’))  (A2.1) 
where 

Td(t)d(t) = e(r -t’)A(t)8(tf)+rle(r’-t)d(rf)A(t) (A2.2) 
with 77 = 1 when d, d are boson operators, and 77 = (-1)‘ when A,_$ are fermion 
operators, P is the number of permutations which bring the product AB to 8A. 
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In (A2.1) the symbol ( ) means either the vacuum average at zero temperature 
or the ensemble average at finite temperatures. 

The motion equation for the Green function GAB can be derived straightforwardly 
as 

i(d/dt)GAB(f - t ’ )  = 6 ( t  - ?’)([A(?), d(t’)]*)+(([A(t), f i ( t ) ] \d( t ‘ ) ) )  (A2.3) 
where the plus or minus sign in the first term is used for fermion or boson operators 
respectively. Usually a Fourier transformation is made: 

Then the time correlation function of the operator product @(t’)d(t)) can be proved 
as 

where 

p l / k a T  = 1/T. (A2.6) 
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